

Unit 8: Energy

This unit will take approximately 5 weeks. The pace is always determined by the ability of your students. Some areas can be skipped or used as enrichment, while other areas include more challenges to those more advanced students. In this outline, you may find that the pace is too quick for your students and may want to insert some "processing time" for them.

This timeline is based on 55-minute periods.

Outline	Teacher Notes
Day 1	Pre-Test Energy
<i>Objective</i> : Introducing the context of Energy	Framing Questions: Be sure to share these ideas. This will give
Activity: Framing questions - Whiteboard	you some clues as to what misconceptions students may have.
Due: None	Have the students whiteboard their answers for class discussion
<i>QOD</i> : Does a boulder just sitting on top of a hill have energy?	
Day 2	The pre-lab will get students to think about energy, but coming up
<i>Objective</i> : I can Identifying a system, types of energy storage and	with their own "names" for each type of energy identified at each
whether energy is be transformed or transferred.	station. Make a list of these, and identify what the system is, and
Activity: Exploring Energy Lab	that energy can be transformed or transferred. Also, group these
Due: None	names and come up with a common terminology. Real names for
<i>QOD</i> : If a stretched rubber band is released, does it have energy	each type of energy.
as it is flying through the air?	
Day 3	Go through the reading pages and include Finish the lab and
<i>Objective</i> : I can identify a system, type of energy storage and the	questions for yesterday. Review these new terms!
initial and final state of a scenario.	Include these new terms, and go back through the lab including
Activity: Reading Page: Energy	the initial and final state.
Homework: Practice 8.1	Do some of the practice 8.1 in class. Assign the rest for homework.
Due: Lab	
<i>QOD</i> : If a stretched rubber band is released, what is its initial	
state? It's final state?	
Day 4	Begin by reviewing the homework. Whiteboard this if you can
Objective : I can use the law of Conservation of Energy to trace	afford the time.
the process of energy transformation in an energy pie chart.	Next, start with the reading page: Law of Conservation of Energy.
Activity: Exploring Energy Transformations Lab	Now take what they know about energy transformations and turn
<i>Due</i> : Practice 8.1	it into a pie chart. Be sure to identify the system!
<i>QOD</i> : If a stretched rubber band has the potential to move, how	There is a LOT of new vocab here, so take it slow and use the terms
did the rubber band get its energy in the first place?	in class often .
	Get started on the lab, but you will have to finish it tomorrow.

Outline	Teacher Notes
Day 5 <i>Objective</i> : I can translate energy into a pie chart if I know the	Finish the class discussion of the lab. Students should have a good grasp of the new vocab by now. Do part of the Practice 8.2 Energy
system, and two or more stages of the objects of question.	Pie Charts in class and assign the rest for practice.
Homework: Practice 8.2	Energy Quiz 1
Due : Exploring Energy Transformations Lab	
<i>QOD</i> : Energy pie charts only work for which of these? Energy	
transformations or Energy transfers. How do you know?	
Day 6 Objective: Lean was nie shorts to remander to remain store as and	Review Energy Quiz 1.
transformations in different situations	discuss #6 and 8. Those 2 questions can lead to a good discussion
Activity: White hoard the homework Practice 8.2	Review the OOD Now ask the same question but take the boy out
Due: Practice 8.2	of the system. You won't have time to do the lab, so set it up with
<i>QOD</i> : Draw an energy pie chart of a boy stretching a rubber band,	the question of the day. Ask for student's ideas for answers.
releasing it, and it is shot across the room. System; boy, rubber	
band and earth.	
Day 7	Now do the exploring energy transfers lab.
<i>Objective</i> : I can explain that the mechanical energy of a system	Conduct a class discussion about ways of representing energy
may be conserved or not, depending on how the system is	storage and transformations in a drawing. But now include a
defined.	transfer of energy.
Activity: Exploring Energy Transfers Lab	
Due : Exploring Energy Transfers Lab	
QUD: How can we show that energy is being transferred into out	
Day 8	Review the Lab except now use nictorial description using har
Objective: I can draw har granhs to represent energy storage	charts. Use the reading nage to help students translate nie charts
transfer and transformations for different situations.	to bar graphs. Start with transformations, then move to transfers.
<i>Activity</i> : Review Lab. Reading page: Using Bar Graphs to	Be sure to use the circle in the middle as a system and show that
Represent Energy Transfers	energy entering or leaving the system is now called work .
Homework: Practice 8.3	
Due:	
<i>QOD</i> : Can you use a pie chart to represent a transfer of energy?	
Why or Why not?	

Outline	Teacher Notes
Day 9	Review everything you've done in class the last 2 weeks.
<i>Objective</i> : I can relate working to external forces acting on a	Whiteboard the homework, practice 8.3.
system.	Students must be proficient at this point before moving on.
Due: Practice 8.3	
<i>QOD</i> : Draw a bar graph of a boy stretching a rubber band,	
releasing it, and it is shot across the room. System; rubber band	
and earth.	
Day 10	This segment completes a qualitative review of Energy. Moving
Objective:	forward, the unit includes graphing and calculation, some of it
<i>Handouts</i> : Energy Quiz 2	extensive. It will be helpful if you have already covered the forces
Due:	unit (Unit 5) as you will be drawing force diagrams.
QOD:	Energy Quiz 2
Day 11	Review Energy Quiz 2.
<i>Objective</i> : I can construct a graph to calculate the amount of	Reading and calibrating the scales might need a little "pre-lab"
work that is transferred into/out of a system.	instruction. Introducing Force (N) instead of weight (lbs) will be
<i>Activity</i> : What is Work Lab	new for the students. QOD will help set up this lab. Using foam
Due: None	core board works well for all the ramps. Remember, we are only
<i>QOD</i> : A car at rest is at the bottom of a ramp. If <i>you</i> push it up a	pulling to get the car to a <i>specific</i> height, <i>not different heights!</i>
ramp, what would an energy bar chart look like? System: Car,	Start by whiteboarding the Pre-Lab Discussion. This will help
ramp, earth	students develop an idea of what data they will be collecting.
Day 12	Finish the lab.
<i>Objective</i> : I can find a mathematical equation to calculate the	Have the students do multiple ramps and graph each ramp on the
amount of work that is put into a system.	same graph. It might be useful to turn these into line graphs
<i>Activity</i> : What is Work Lab	instead of bar graphs.
<i>Due</i> : What is Work? Lab	You'll have to get students to find the area under each line. This
<i>QOD</i> : As a ramp gets steeper, what happens to the amount of	area is called work, and to find the area, you take the $F \ge \Delta x =$
force when pulling it up a ramp?	Work

Outline	Teacher Notes
Day 13	Review Work equation.
<i>Objective</i> : I can derive an equation to calculate the gravitational	The next part (Lab) can either be done as a demo or whole class.
potential energy of a system.	Refer to the reading page: Work and Energy for some direction.
<i>Activity</i> : Relating Work to change in energy Conceptual Lab	After deriving the equation, do some of the practice problems from
Homework: Practice 8.4	the homework 8.4. Assign some of it for homework.
Due: None	
<i>QOD</i> : What are the units for Work? What are the units for	
Energy?	
Day 14	Whiteboard the Lab results from yesterday.
<i>Objective</i> : I can relate the work done by the force of gravity to	Finish with the Reading Pages: Gravitational Potential Energy
the change in gravitational potential energy of a system.	By now students should have been able to comprehend the
<i>Activity</i> : whiteboard the Lab: Work and Energy	association of Work and Energy.
Homework: Practice 8.5	
Due: Practice 8.4	
<i>QOD</i> : When a boy is pushing a shopping cart forward, why isn't	
the weight of the shopping cart used in the calculation of work	
done by the boy?	
Day 15	Review the homework
<i>Objective</i> : I can calculate the quantity of work and energy done	Energy Quiz 3
on a system.	
<i>Activity</i> : Review homework	
<i>Due</i> : Practice 8.5	
<i>QOD</i> : If a 2kg water balloon drops from a 10 m tall building, what	
is the amount of work done to get it from the bottom floor to the	
top? How much Eg does the balloon have?	

Outline	Teacher Notes
Day 16	Review Quiz 3
<i>Objective</i> : I can relate work done by the elastic force to the	Today students will revisit Hooke's Law.
change in elastic potential energy of the system.	They will also see that the amount energy stored in a spring,
Activity: Elastic Potential Energy Lab	amount of work done by the spring and the deformation of the
Due: None	spring are all related.
<i>QOD</i> : In our bar charts, we mention elastic energy. Does a spring	Key: Don't let students measure the length of the spring, but only
count, and is it capable of doing work?	how far the spring stretches.
	Do the pre-lab discussion before you begin the lab. Review what
	the graph will look like, and relate it back to their car on a ramp
	lab.
Day 17	Finish the lab and make sure students have the graph completed
<i>Objective</i> : I can develop a mathematical equation for calculating	correctly. This should allow them to find the area under a curve to
elastic potential energy using a graph.	find the work done, and understanding the spring constant <i>k</i> .
Activity: Finish: Elastic Potential Energy Lab	Relate this to the equation $W_{F elastic} = -\Delta E_e$
Homework: Practice 8.6	Do some of the homework problems in class. Assign other
<i>Due</i> : Elastic Potential Energy Lab	problems for homework.
<i>QOD</i> : If a spring has an constant $k = 1.5$ N/m, what does this	
mean? Is this a tough or soft spring?	
Day 18	If students are having trouble with the calculations, it might help
<i>Objective</i> : I can relate work done by the elastic force to the	to review using the reading pages: Elastic Potential Energy
change in elastic potential energy of the system.	
<i>Activity</i> : Whiteboard practice 8.6	
<i>Due</i> : Practice 8.6	
<i>QOD</i> : Calculate the elastic force required to move a 1.2kg bowling	
ball on the ground up to a vertical height of 2 m.	
This might be a good time for a break. The amount of content you've covered is enormous, and a review before moving on to a tough lab	
would be a good idea. I would consider giving the quiz today. You'll be covering a difficult lab (Kinetic Energy) and if you start today,	
you'll have a quiz (Energy Quiz 4) in the middle of completing the lab.	

Outline	Teacher Notes
 Day 19 <i>Objective</i>: To collect data that will show a relationship between the height of a car on a ramp and its speed. <i>Activity</i>: Kinetic Energy Lab <i>Due</i>: None <i>QOD</i>: What factors do you think effect the amount of Kinetic Energy an object has? 	Show students a bar graph of a simple scenario that involves Work, Gravitational, Elastic and Kinetic Energy. Note that we've covered all of them but Kinetic. There are multiple ways to do this lab without expensive equipment. Even via online simulations. Be sure to cover the pre-lab discussion, especially question #5. Try to collect all the data finish tomorrow.
 Day 20 <i>Objective</i>: To develop a mathematical equation for calculating Kinetic Energy. <i>Activity</i>: Finish lab, Energy Quiz 4? <i>Due</i>: Lab <i>QOD</i>: What happens to the kinetic energy of a car as it moves down a ramp? Why must we ignore friction? 	Energy Quiz 4 – unless you gave it already To derive the equation for kinetic energy. After filling out the chart, make a graph of a velocity vs. time graph, and then a kinetic energy vs. speed squared graph. After finding the slope, students should derive the equation for E_k .
 Day 21 <i>Objective</i>: I can use the mathematical equation for calculating kinetic energy. <i>Homework</i>: Practice 8.7 <i>Due</i>: None <i>QOD</i>: If a rock has 145 J of gravitational energy when it is 4 meters above the ground, how much kinetic energy will have just before it hits the dirt? 	Review the lab and the equations derived from the lab. Go through the reading page, "Kinetic Energy" as practice to solving problems. Go through the Practice 8.7 and assign some for homework.
 Day 22 <i>Objective</i>: I can apply the conservation of energy theorem to different scenarios. <i>Activity</i>: Whiteboard 8.7 <i>Homework</i>: Practice 8.8 <i>Due</i>: Practice 8.7 <i>QOD</i>: Do you think the law of conservation of energy apply to all the energy we've discussed previously? 	Whiteboard the homework 8.7 This is where you'll start to tie energy and net work together (Work/Energy Theorem). Do some of the problems from practice 8.8 and assign other problems for homework.

Outline	Teacher Notes
Day 23	Of course, you need a set of stairs to accomplish this lab. Two to
<i>Objective</i> : I can calculate the amount of work, energy and power	three floors is more than sufficient. Use a tape measure (m) to
I have when climbing stairs.	measure the height of the stairs from the ground to the floor of the
Activity: Human Power Lab	highest level. You should remind students that they don't have to
<i>Due</i> : Practice 8.8	participate to the best of their ability.
<i>QOD</i> : Can you produce more horsepower than a lawnmower?	
How about a can opener?	
Day 24	Review the lab. Find the horse power of different appliances and
<i>Objective</i> : I can relate power to work done in an amount of time,	have them compare their power to those items.
or the change in energy over a time interval.	Do problems 1-5, 8 in class. Assign the rest for homework.
Homework: Practice 8.9	
<i>Due</i> : Human Power Lab	
<i>QOD</i> : Jim and Jontay tied as they ran up two flights of stairs. How	
was it possible that Jim produced more power?	
Day 25	Review the homework and the rest of the unit.
<i>Objective</i> : I can relate power to work, and work to the change in	Go back over the framing questions to see if they make sense now.
Energy. I can use the conservation of energy to solve for E_k , E_g	Energy Test tomorrow.
and E _e .	
Activity: Review	
Due: Practice 8.9	
<i>QOD</i> : If a lawnmower can produce 1.5 horsepower, how much	
energy can it produce?	
Day 26	Unit 8 Test
Objective:	
Activity: Energy Test	
Due:	
<i>QOD</i> :	